MHD Turbulence: Scaling Laws and Astrophysical Implications

نویسندگان

  • Jungyeon Cho
  • Ethan T. Vishniac
چکیده

Turbulence is the most common state of astrophysical flows. In typical astrophysical fluids, turbulence is accompanied by strong magnetic fields, which has a large impact on the dynamics of the turbulent cascade. Recently, there has been a significant breakthrough on the theory of magnetohydrodynamic (MHD) turbulence. For the first time we have a scaling model that is supported by both observations and numerical simulations. We review recent progress in studies of both incompressible and compressible turbulence. We compare Iroshnikov-Kraichnan and Goldreich-Sridhar models, and discuss scalings of Alfvén, slow, and fast waves. We also discuss the completely new regime of MHD turbulence that happens below the scale at which hydrodynamic turbulent motions are damped by viscosity. In the case of the partially ionized diffuse interstellar gas the viscosity is due to neutrals and truncates the turbulent cascade at ∼parsec scales. We show that below this scale magnetic fluctuations with a shallow spectrum persist and discuss the possibility of a resumption of the MHD cascade after ions and neutrals decouple. We discuss the implications of this new insight into MHD turbulence for cosmic ray transport, grain dynamics, etc., and how to test theoretical predictions against observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Alignment and Exact Scaling Laws in Magnetohydrodynamic Turbulence

Magnetohydrodynamic (MHD) turbulence is pervasive in astrophysical systems. Recent highresolution numerical simulations suggest that the energy spectrum of strong incompressible MHD turbulence is E(k⊥) ∝ k ⊥ . So far, there has been no phenomenological theory that simultaneously explains this spectrum and satisfies the exact analytic relations for MHD turbulence due to Politano & Pouquet. Indee...

متن کامل

Simulations of Electron Magnetohydrodynamic Turbulence

We present numerical simulations of electron magnetohydrodynamic (EMHD) and electron reduced MHD (ERMHD) turbulence. Comparing scaling relations, we find that both EMHD and ERMHD turbulence show similar spectra and anisotropy. We develop new techniques to study anisotropy of EMHD turbulence. Our detailed study of anisotropy of EMHD turbulence supports our earlier result of k‖ ∝ k ⊥ scaling, whe...

متن کامل

The Properties of Compressible Mhd and Cosmic Ray Transport

Turbulence is the most common state of astrophysical flows. In typical astrophysical fluids, turbulence is accompanied by strong magnetic fields, which has a large impact on the dynamics of the turbulent cascade. Recently, there has been a significant breakthrough on the theory of magnetohydrodynamic (MHD) turbulence. For the first time we have a scaling model that is supported by both observat...

متن کامل

Compressible Magnetohydrodynamic Turbulence: mode coupling, scaling relations, anisotropy, new regime and astrophysical implications

We present numerical simulations and explore scalings and anisotropy of compressible magnetohydrodynamic (MHD) turbulence. Our study covers both gas pressure dominated (high β) and magnetically dominated (low β) plasmas at different Mach numbers. In addition, we present results for superAlfvenic turbulence and discuss in what way it is similar to the subAlfvenic turbulence. We describe a techni...

متن کامل

Compressible Magnetohydrodynamic Turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime, and astrophysical implications

We present numerical simulations and explore scalings and anisotropy of compressible magnetohydrodynamic (MHD) turbulence. Our study covers both gas pressure dominated (high β) and magnetic pressure dominated (low β) plasmas at different Mach numbers. In addition, we present results for superAlfvenic turbulence and discuss in what way it is similar to the subAlfvenic turbulence. We describe a t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003